Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
plus2(s1(X), plus2(Y, Z)) -> plus2(X, plus2(s1(s1(Y)), Z))
plus2(s1(X1), plus2(X2, plus2(X3, X4))) -> plus2(X1, plus2(X3, plus2(X2, X4)))
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
plus2(s1(X), plus2(Y, Z)) -> plus2(X, plus2(s1(s1(Y)), Z))
plus2(s1(X1), plus2(X2, plus2(X3, X4))) -> plus2(X1, plus2(X3, plus2(X2, X4)))
Q is empty.
Q DP problem:
The TRS P consists of the following rules:
PLUS2(s1(X1), plus2(X2, plus2(X3, X4))) -> PLUS2(X3, plus2(X2, X4))
PLUS2(s1(X1), plus2(X2, plus2(X3, X4))) -> PLUS2(X1, plus2(X3, plus2(X2, X4)))
PLUS2(s1(X), plus2(Y, Z)) -> PLUS2(X, plus2(s1(s1(Y)), Z))
PLUS2(s1(X), plus2(Y, Z)) -> PLUS2(s1(s1(Y)), Z)
PLUS2(s1(X1), plus2(X2, plus2(X3, X4))) -> PLUS2(X2, X4)
The TRS R consists of the following rules:
plus2(s1(X), plus2(Y, Z)) -> plus2(X, plus2(s1(s1(Y)), Z))
plus2(s1(X1), plus2(X2, plus2(X3, X4))) -> plus2(X1, plus2(X3, plus2(X2, X4)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
PLUS2(s1(X1), plus2(X2, plus2(X3, X4))) -> PLUS2(X3, plus2(X2, X4))
PLUS2(s1(X1), plus2(X2, plus2(X3, X4))) -> PLUS2(X1, plus2(X3, plus2(X2, X4)))
PLUS2(s1(X), plus2(Y, Z)) -> PLUS2(X, plus2(s1(s1(Y)), Z))
PLUS2(s1(X), plus2(Y, Z)) -> PLUS2(s1(s1(Y)), Z)
PLUS2(s1(X1), plus2(X2, plus2(X3, X4))) -> PLUS2(X2, X4)
The TRS R consists of the following rules:
plus2(s1(X), plus2(Y, Z)) -> plus2(X, plus2(s1(s1(Y)), Z))
plus2(s1(X1), plus2(X2, plus2(X3, X4))) -> plus2(X1, plus2(X3, plus2(X2, X4)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
PLUS2(s1(X1), plus2(X2, plus2(X3, X4))) -> PLUS2(X3, plus2(X2, X4))
PLUS2(s1(X), plus2(Y, Z)) -> PLUS2(s1(s1(Y)), Z)
PLUS2(s1(X1), plus2(X2, plus2(X3, X4))) -> PLUS2(X2, X4)
Used argument filtering: PLUS2(x1, x2) = x2
plus2(x1, x2) = plus1(x2)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
PLUS2(s1(X1), plus2(X2, plus2(X3, X4))) -> PLUS2(X1, plus2(X3, plus2(X2, X4)))
PLUS2(s1(X), plus2(Y, Z)) -> PLUS2(X, plus2(s1(s1(Y)), Z))
The TRS R consists of the following rules:
plus2(s1(X), plus2(Y, Z)) -> plus2(X, plus2(s1(s1(Y)), Z))
plus2(s1(X1), plus2(X2, plus2(X3, X4))) -> plus2(X1, plus2(X3, plus2(X2, X4)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
PLUS2(s1(X1), plus2(X2, plus2(X3, X4))) -> PLUS2(X1, plus2(X3, plus2(X2, X4)))
PLUS2(s1(X), plus2(Y, Z)) -> PLUS2(X, plus2(s1(s1(Y)), Z))
Used argument filtering: PLUS2(x1, x2) = x1
s1(x1) = s1(x1)
plus2(x1, x2) = plus
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
plus2(s1(X), plus2(Y, Z)) -> plus2(X, plus2(s1(s1(Y)), Z))
plus2(s1(X1), plus2(X2, plus2(X3, X4))) -> plus2(X1, plus2(X3, plus2(X2, X4)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.